博士2年生 黄君が研究内容をIoT2023で口頭発表しました – ‘ Real-Time Image-Based Automotive Sensing: A Practice on Fine-Grained Garbage Disposal ’
Abstract:
This research presents a real-time automotive sensing system for the data of urban garbage disposal. The proposed solution is implemented on an edge computing device mounted on garbage truck where a deep learning based image processing algorithm is implemented to automatically counted the number of collected garbage bags from garbage collection video. A MQTT-based data server was developed to enable data publication from sensing device to server and data accumulation and to facilitate application development. Our system has the functions of high concurrency and low transmission delay, offline reconnection, breakpoint transmission and client authentication. This work is to provide a real-time, low-cost, reliable and replicable system for the implementation of a widespread sensing network for automotive edge computing and smart city applications.